Getting Beyond the Basics with Azure Machine Learning

ABSTRACT

Azure Machine Learning offers a low-code approach to performing machine learning tasks, but what happens when you need to do something a little more complex? In this talk, we will go beyond the Azure Machine Learning designer and show how to use Azure Machine Learning in a code-first environment. We will understand how the Pipeline metaphor works within code and use that to generate and deploy models, as well as writing outputs to locations such as an Azure SQL Database. For deployment, we will see the differences between batch and real-time inference. We will also review how Azure Machine Learning handles model registration and versioning. This talk assumes some basic familiarity with Azure Machine Learning and the Python language.

ADDITIONAL MEDIA

No recordings or additional media are available for this talk.